Homework Set 9

(sect 5.1 - 5.4)

1. Is $\lambda = 3$ an eigenvalue of $\begin{bmatrix} 1 & 2 & 2 \\ 3 & -2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$? If so, find one corresponding eigenvector.

2. Is
$$\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$
 an eigenvector of $\begin{bmatrix} 3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5 \end{bmatrix}$? If so, find the corresponding eigenvalue.

3. Find a basis for the eigenspace of $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & -3 & 0 \\ 4 & -13 & 1 \end{bmatrix}$ corresponding to $\lambda = -2$.

4. For
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$$
, find one eigenvalue with no calculation. Justify your answer.

For questions 5 through 7, find the characteristic polynomial and the eigenvalues of each matrix.

5.
$$A = \begin{bmatrix} 7 & -2 \\ 2 & 3 \end{bmatrix}$$

6.
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

7.
$$A = \begin{bmatrix} 5 & -2 & 3 \\ 0 & 1 & 0 \\ 6 & 7 & -2 \end{bmatrix}$$

For questions 8 and 9, list the eigenvalues of the matrices, repeated according to their multiplicities.

8.
$$A = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 8 & -4 & 0 & 0 \\ 0 & 7 & 1 & 0 \\ 1 & -5 & 2 & 1 \end{bmatrix}$$

9.
$$A = \begin{bmatrix} 3 & 0 & 0 & 0 & 0 \\ -5 & 1 & 0 & 0 & 0 \\ 3 & 8 & 0 & 0 & 0 \\ 0 & -7 & 2 & 1 & 0 \\ -4 & 1 & 9 & -2 & 3 \end{bmatrix}$$

- 10. Let $A = PDP^{-1}$ and compute A^4 where $P = \begin{bmatrix} 2 & -3 \\ -3 & 5 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 \\ 0 & 1/2 \end{bmatrix}$.
- 11. Use the factorization $A = PDP^{-1}$ to compute A^k , where k represents some positive integer. $A = \begin{bmatrix} -2 & 12 \\ -1 & 5 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 4 \\ 1 & -3 \end{bmatrix}$

12. The matrix A is factored in the form $A = PDP^{-1}$. Use the Diagonalization Theorem in section 5.3 to find the eigenvalues of A and a basis for each eigenspace.

$$A = \begin{bmatrix} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{bmatrix} = \begin{bmatrix} -2 & 0 & -1 \\ 0 & 1 & 2 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 2 & 1 & 4 \\ -1 & 0 & -2 \end{bmatrix}$$

For questions 13 through 15, diagonalize the given matrices if possible.

13. $\begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$

14. $\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix}$

15.
$$\begin{bmatrix} 0 & -4 & -6 \\ -1 & 0 & -3 \\ 1 & 2 & 5 \end{bmatrix}$$
, where $\lambda = 2,1$

16. Let $\mathcal{E} = \{ \boldsymbol{e_1}, \boldsymbol{e_2}, \boldsymbol{e_3} \}$ be the standard basis for \mathbb{R}^3 , $\mathcal{B} = \{ \boldsymbol{b_1}, \boldsymbol{b_2}, \boldsymbol{b_3} \}$ be a basis for vector space *V*, and $T: \mathbb{R}^3 \to V$ be a linear transformation with the property that $T(x_1, x_2, x_3) = (x_3 - x_2)\boldsymbol{b_1} - (x_1 + x_3)\boldsymbol{b_2} + (x_1 - x_2)\boldsymbol{b_3}$

- a. Compute $T(e_1)$, $T(e_2)$, and $T(e_3)$.
- b. Compute $[T(e_1)]_{\mathcal{B}}$, $[T(e_2)]_{\mathcal{B}}$, and $[T(e_3)]_{\mathcal{B}}$.
- c. Find the matrix for *T* relative to \mathcal{E} and \mathcal{B} .
- 17. Let $\mathcal{A} = \{a_1, a_2\}$ and $\mathcal{B} = \{b_1, b_2\}$ be bases for vector spaces V and W, respectively. Let $T: V \to W$ be a linear transformation with the property that $T(a_1) = 2b_1 - 3b_2, \qquad T(a_2) = -4b_1 + 5b_2$ Find the matrix for T relative to \mathcal{A} and \mathcal{B} .

- 18. Let $T: \mathbb{P}_2 \to \mathbb{P}_4$ be the transformation that maps a polynomial p(t) into the polynomial $p(t) + t^2 p(t)$.
 - a. Find the image of $p(t) = 2 t + t^2$.
 - b. Show that *T* is a linear transformation.

- c. Find the matrix for *T* relative to the bases $\{1, t, t^2\}$ and $\{1, t, t^2, t^3, t^4\}$.
- 19. Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$. Find a basis \mathcal{B} for \mathbb{R}^2 with the property that $[T]_{\mathcal{B}}$ is diagonal, where $A = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$.

20. Let
$$A = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$$
 and $\mathcal{B} = \{\boldsymbol{b_1}, \boldsymbol{b_2}\}$ for $\boldsymbol{b_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \boldsymbol{b_2} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$. Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\boldsymbol{x}) = A\boldsymbol{x}$.

a. Verify that $\boldsymbol{b_1}$ is an eigenvector of A, but A is not diagonalizable.

b. Find the \mathcal{B} -matrix for T.