Homework Set 9

(sect $5.1-5.4$)

1. Is $\lambda=3$ an eigenvalue of $\left[\begin{array}{ccc}1 & 2 & 2 \\ 3 & -2 & 1 \\ 0 & 1 & 1\end{array}\right]$? If so, find one corresponding eigenvector.
2. Is $\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$ an eigenvector of $\left[\begin{array}{lll}3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5\end{array}\right]$? If so, find the corresponding eigenvalue.
3. Find a basis for the eigenspace of $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & -3 & 0 \\ 4 & -13 & 1\end{array}\right]$ corresponding to $\lambda=-2$.
4. For $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right]$, find one eigenvalue with no calculation. Justify your answer.

For questions 5 through 7, find the characteristic polynomial and the eigenvalues of each matrix.
5. $A=\left[\begin{array}{cc}7 & -2 \\ 2 & 3\end{array}\right]$
6. $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$
7. $A=\left[\begin{array}{ccc}5 & -2 & 3 \\ 0 & 1 & 0 \\ 6 & 7 & -2\end{array}\right]$

For questions 8 and 9, list the eigenvalues of the matrices, repeated according to their multiplicities.
8. $A=\left[\begin{array}{cccc}5 & 0 & 0 & 0 \\ 8 & -4 & 0 & 0 \\ 0 & 7 & 1 & 0 \\ 1 & -5 & 2 & 1\end{array}\right]$
9. $A=\left[\begin{array}{ccccc}3 & 0 & 0 & 0 & 0 \\ -5 & 1 & 0 & 0 & 0 \\ 3 & 8 & 0 & 0 & 0 \\ 0 & -7 & 2 & 1 & 0 \\ -4 & 1 & 9 & -2 & 3\end{array}\right]$
10. Let $A=P D P^{-1}$ and compute A^{4} where $P=\left[\begin{array}{cc}2 & -3 \\ -3 & 5\end{array}\right]$ and $D=\left[\begin{array}{cc}1 & 0 \\ 0 & 1 / 2\end{array}\right]$.
11. Use the factorization $A=P D P^{-1}$ to compute A^{k}, where k represents some positive integer. $A=\left[\begin{array}{cc}-2 & 12 \\ -1 & 5\end{array}\right]=\left[\begin{array}{ll}3 & 4 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}-1 & 4 \\ 1 & -3\end{array}\right]$
12. The matrix A is factored in the form $A=P D P^{-1}$. Use the Diagonalization Theorem in section 5.3 to find the eigenvalues of A and a basis for each eigenspace.

$$
A=\left[\begin{array}{ccc}
4 & 0 & -2 \\
2 & 5 & 4 \\
0 & 0 & 5
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 0 & -1 \\
0 & 1 & 2 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 1 \\
2 & 1 & 4 \\
-1 & 0 & -2
\end{array}\right]
$$

For questions 13 through 15, diagonalize the given matrices if possible.
13. $\left[\begin{array}{cc}1 & 0 \\ 6 & -1\end{array}\right]$
14. $\left[\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right]$
15. $\left[\begin{array}{ccc}0 & -4 & -6 \\ -1 & 0 & -3 \\ 1 & 2 & 5\end{array}\right]$, where $\lambda=2,1$
16. Let $\mathcal{E}=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ be the standard basis for $\mathbb{R}^{3}, \mathcal{B}=\left\{\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{2}, \boldsymbol{b}_{3}\right\}$ be a basis for vector space V, and $T: \mathbb{R}^{3} \rightarrow V$ be a linear transformation with the property that

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{3}-x_{2}\right) \boldsymbol{b}_{1}-\left(x_{1}+x_{3}\right) \boldsymbol{b}_{2}+\left(x_{1}-x_{2}\right) \boldsymbol{b}_{3}
$$

a. Compute $T\left(\boldsymbol{e}_{1}\right), T\left(\boldsymbol{e}_{2}\right)$, and $T\left(\boldsymbol{e}_{3}\right)$.
b. Compute $\left[T\left(\boldsymbol{e}_{1}\right)\right]_{\mathcal{B}},\left[T\left(\boldsymbol{e}_{2}\right)\right]_{\mathcal{B}}$, and $\left[T\left(\boldsymbol{e}_{3}\right)\right]_{\mathcal{B}}$.
c. Find the matrix for T relative to \mathcal{E} and \mathcal{B}.
17. Let $\mathcal{A}=\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right\}$ and $\mathcal{B}=\left\{\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}\right\}$ be bases for vector spaces V and W, respectively. Let $T: V \rightarrow W$ be a linear transformation with the property that
$T\left(\boldsymbol{a}_{1}\right)=2 b_{1}-3 b_{2}$,
$T\left(\boldsymbol{a}_{2}\right)=-4 \boldsymbol{b}_{1}+5 \boldsymbol{b}_{2}$
Find the matrix for T relative to \mathcal{A} and \mathcal{B}.
18. Let $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{4}$ be the transformation that maps a polynomial $\boldsymbol{p}(t)$ into the polynomial $\boldsymbol{p}(t)+t^{2} \boldsymbol{p}(t)$.
a. Find the image of $\boldsymbol{p}(t)=2-t+t^{2}$.
b. Show that T is a linear transformation.
c. Find the matrix for T relative to the bases $\left\{1, t, t^{2}\right\}$ and $\left\{1, t, t^{2}, t^{3}, t^{4}\right\}$.
19. Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(\boldsymbol{x})=A \boldsymbol{x}$. Find a basis \mathcal{B} for \mathbb{R}^{2} with the property that $[T]_{\mathcal{B}}$ is diagonal, where $A=\left[\begin{array}{cc}4 & -2 \\ -1 & 3\end{array}\right]$.
20. Let $A=\left[\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right]$ and $\mathcal{B}=\left\{\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{2}\right\}$ for $\boldsymbol{b}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \boldsymbol{b}_{\mathbf{2}}=\left[\begin{array}{l}5 \\ 4\end{array}\right]$. Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(\boldsymbol{x})=A \boldsymbol{x}$.
a. Verify that $\boldsymbol{b}_{\mathbf{1}}$ is an eigenvector of A, but A is not diagonalizable.
b. Find the \mathcal{B}-matrix for T.

